Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth and optical properties of InxAlyGa1-x-yN quaternary alloys

Identifieur interne : 010572 ( Main/Repository ); précédent : 010571; suivant : 010573

Growth and optical properties of InxAlyGa1-x-yN quaternary alloys

Auteurs : RBID : Pascal:01-0019487

Descripteurs français

English descriptors

Abstract

InxAlyGa1-xN quaternary alloys with different In and Al compositions were grown by metalorganic chemical vapor deposition. Optical properties of these quaternary alloys were studied by picosecond time-resolved photoluminescence. It was observed that the dominant optical transition at low temperatures in InxAlyGa1-xN quaternary alloys was due to localized exciton recombination, while the localization effects in InxAlyGa1-xN quaternary alloys were combined from those of InGaN and AlGaN ternary alloys with comparable In and Al compositions. Our studies have revealed that InxAlyGa1-xN quaternary alloys with lattice matched with GaN epilayers (y≃4.8x) have the highest optical quality. More importantly, we can achieve not only higher emission energies but also higher emission intensity (or quantum efficiency) in InxAlyGa1-x-yN quaternary alloys than that of GaN. The quantum efficiency of InxAlyGa1-xN quaternary alloys was also enhanced significantly over AlGaN alloys with a comparable Al content. These results strongly suggested that InxAlyGa1-x-yN quaternary alloys open an avenue for the fabrication of many optoelectronic devices such as high efficient light emitters and detectors, particularly in the ultraviolet region. © 2001 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0019487

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth and optical properties of In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloys</title>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nam, K B" uniqKey="Nam K">K. B. Nam</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, K H" uniqKey="Kim K">K. H. Kim</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lin, J Y" uniqKey="Lin J">J. Y. Lin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jiang, H X" uniqKey="Jiang H">H. X. Jiang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">01-0019487</idno>
<date when="2001-01-01">2001-01-01</date>
<idno type="stanalyst">PASCAL 01-0019487 AIP</idno>
<idno type="RBID">Pascal:01-0019487</idno>
<idno type="wicri:Area/Main/Corpus">011F63</idno>
<idno type="wicri:Area/Main/Repository">010572</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Excitons</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Line intensity</term>
<term>MOCVD</term>
<term>Photoluminescence</term>
<term>Semiconductor epitaxial layers</term>
<term>Time resolved spectra</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7866F</term>
<term>7855C</term>
<term>8105E</term>
<term>8115G</term>
<term>7847</term>
<term>7135G</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Aluminium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Méthode MOCVD</term>
<term>Spectre résolution temporelle</term>
<term>Photoluminescence</term>
<term>Exciton</term>
<term>Intensité raie</term>
<term>Couche épitaxique semiconductrice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys with different In and Al compositions were grown by metalorganic chemical vapor deposition. Optical properties of these quaternary alloys were studied by picosecond time-resolved photoluminescence. It was observed that the dominant optical transition at low temperatures in In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys was due to localized exciton recombination, while the localization effects in In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys were combined from those of InGaN and AlGaN ternary alloys with comparable In and Al compositions. Our studies have revealed that In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys with lattice matched with GaN epilayers (y≃4.8x) have the highest optical quality. More importantly, we can achieve not only higher emission energies but also higher emission intensity (or quantum efficiency) in In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloys than that of GaN. The quantum efficiency of In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys was also enhanced significantly over AlGaN alloys with a comparable Al content. These results strongly suggested that In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloys open an avenue for the fabrication of many optoelectronic devices such as high efficient light emitters and detectors, particularly in the ultraviolet region. © 2001 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>78</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth and optical properties of In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloys</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LI (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NAM (K. B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KIM (K. H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIN (J. Y.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JIANG (H. X.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>61-63</s1>
</fA20>
<fA21>
<s1>2001-01-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2001 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>01-0019487</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys with different In and Al compositions were grown by metalorganic chemical vapor deposition. Optical properties of these quaternary alloys were studied by picosecond time-resolved photoluminescence. It was observed that the dominant optical transition at low temperatures in In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys was due to localized exciton recombination, while the localization effects in In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys were combined from those of InGaN and AlGaN ternary alloys with comparable In and Al compositions. Our studies have revealed that In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys with lattice matched with GaN epilayers (y≃4.8x) have the highest optical quality. More importantly, we can achieve not only higher emission energies but also higher emission intensity (or quantum efficiency) in In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloys than that of GaN. The quantum efficiency of In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x</sub>
N quaternary alloys was also enhanced significantly over AlGaN alloys with a comparable Al content. These results strongly suggested that In
<sub>x</sub>
Al
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N quaternary alloys open an avenue for the fabrication of many optoelectronic devices such as high efficient light emitters and detectors, particularly in the ultraviolet region. © 2001 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H47</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70A35</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>8115G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7847</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7135G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>MOCVD</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Spectre résolution temporelle</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Time resolved spectra</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Intensité raie</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Line intensity</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fN21>
<s1>008</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0101M000609</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 010572 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 010572 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:01-0019487
   |texte=   Growth and optical properties of InxAlyGa1-x-yN quaternary alloys
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024